Сварка и резка металлов ацетилен

Содержание

Оборудование и материалы для газовой сварки

Проведение работ предполагает подключение целого набора комплектующих элементов. Газосварочное оборудование включает:

  • газовый генератор, являющийся источником ацетилена;
  • баллон с кислородом (для обеспечения процесса горения);
  • газовый редуктор;
  • комплект предохранительных клапанов (позволяют повысить безопасность применения газового оборудования);
  • специальный газовый шланг для подачи соответствующего газа (для каждого вида рукава имеют свою конструктивную особенность, замена одного на другой категорически запрещена);
  • газовая горелка;
  • различные виды припоев и флюсов.

Для удобства применения оборудование для газовой сварки размещают на специальной тележке. Это позволяет придать всей конструкции определенную мобильность и облегчить транспортировку от одного объекта к другому.

Горелки подразделяются на два типа: обычные и инжекторные. При использовании газовой горелки необходимо контролировать скорость выхода газа, длину пламени и создаваемую температуру.

Флюс для выполнения сварки выбирают на основании известных характеристик металла и требуемых задач. В качестве припоя используется проволока. Она служит источником дополнительного металла при сварке.

Применение присадочного материала позволяет качественно выполнить сварку и получить надежное соединение.

сварка, резка, металл, ацетилен

При проведении операции резания металла вместо горелки применяют газовый резак. Кроме основного оборудования, сварочный пост оснащается набором слесарного инструмента, необходимого в процессе проведения работ.

Сварка 20 века. Другого раньше не было. Ацетиленовая сварка. Как это было?

Проволока и флюс

Для соблюдения технологии сварки применяется специальная проволока. Ее называют присадочной, а диаметр выбирается в зависимости от толщины детали и способа сварки. Для правого метода диаметр должен быть равен половине толщины детали, для левого – половине плюс единица.

В зависимости от марки материала применяют конкретный вид проволоки, например марганцевую или кремнемарганцевую. Правильный выбор производится на основании существующих таблиц. Вся проволока выпускается в мотках с соответствующей маркировкой.

Для сварки цветных металлов выпускают присадочные прутки или полосы.

В качестве флюса применяют специальные химические составы на основе борной или кремниевой кислоты с соответствующими добавками. Они выпускаются в форме паст, порошков, растворов. Для получения наилучшего эффекта такие растворы изготавливают самостоятельно.

Сущность процесса газовой сварки

Газопламенная сварка, или просто газовая, предполагает соединение двух деталей или листов металла с помощью создания расплавленных кромок с последующей диффузией основного металла с добавочным (припоем).

Для этого в области шва создается высокотемпературная область благодаря горению определенного газа с заданной скоростью.

Газовая сварка и резка металла производится за счет экзотермической реакции процесса горения подаваемой газовой смеси с жидким (расплавленным) металлом.

Для создания необходимой температуры горения используют смесь кислорода и одного из горючих газов. Одновременно подаются в газовый смеситель от отдельных источников.

Резка ацетиленом

После смесителя их искусственно поджигают. Технология газовой сварки предполагает регулировку объема каждого компонента. Это создает наилучшие условия проведения сварки и резания металла.

Такой принцип применяется во всех газопламенных агрегатах.

По второму способу сварка проводится в обратном направлении – от левого края к правому. Присадочную проволоку медленно перемещают за пламенем горелки, которое направляют на определенный участок.

Обеспечивается лучшая глубина воздействия на края металла, улучшается схватывание за счет медленного остывания и постепенной кристаллизации расплавленного края. Данный метод позволяет получить меньшее рассеивание теплоты, что обеспечивает получение наклонных кромок в 70°.

Такой угол способствует снижению объема наплавленного металла, повышению производительности, снижению расхода газовой смеси, припоя и флюса. Благодаря таким возможностям его применяют для сварки металла толще пяти миллиметров.

В обоих способах, кроме продольного движения струи пламени, делают небольшие поперечные движения. Они позволяют лучше прогревать поверхность металла, близкую к краю, и обеспечить надежное сваривание.

Материалы для выполнения сварки с использованием газа

Технологический процесс с применением газовых материалов зависит от ряда причин и факторов. Основным и не изменяемым газом является кислород при технологически чистом виде.

Предназначение состоит в активации процессов горения металлических деталей для соединения в последующем времени. Газ транспортируется, содержится под высоким давлением для продолжительной работы вне заправочной станции.

Хранение, контакты с техническими маслами недопустимо, а также не рекомендуется использовать кислород под прямыми солнечными лучами.

Получение чистого кислорода происходит из обычного воздуха, для очистки используются специальные устройства. Кислород делится на категории, бывает высший, первый и второй сорта.

Работа с материалами невозможна без сопутствующего кислороду газа. При большинстве случаев применяется ацетилен бесцветного типа.

Ацетилен производится путем соединения воды с карбидом кальция, при определённых температурных воздействия взрывоопасен.

Использование ацетилена обуславливается высокими температурными показателями при сварке соединений, более дешевые аналоги не дают возможности производить качественную работу из-за недостаточной температуры горения.

1.3. Оборудование и инструмент газовой сварки

В оборудование поста газосварщика входят: газовые или ацетиленовые баллоны, ацетиленовые генераторы, газовые редукторы, сварочные горелки, шланги для подвода газов и стол.

Газовые баллоны наиболее распространены водяной емкости 40л, диаметром 214÷220 мм, высотой 1390 мм и весом 50÷60 кг. Газовая емкость баллона 6 м3 при давлении 15 МПа.

Окрас баллонов зависит от транспортируемого газа: кислород – голубой цвет с надписью черными буквами; С2Н2 – белый цвет с надписью красными буквами.

Ацетиленовый баллон конструктивно отличается от кислородного тем, что он заполняется пористой массой, пропитанной ацетоном, а для уменьшения взрывоопасности имеет стальной вентиль.

Газовые редукторы применяют для питания сварочных постов газом из баллона. Они снижают давление газа до рабочего, поддерживают его постоянным и обеспечивают легкую регулировку рабочего давления.

Редукторы бывают прямого и обратного действия, различие между которыми состоит в том, что в первом случае газ из камеры высокого давления стремится открыть клапан, закрывающий отверстие камеры низкого давления, а во втором случае – закрывать клапан. Редукторы окрашены в цвет баллона, снабжены двумя манометрами, один из которых показывает давление газа в баллоне, другой – рабочее давление газа.

  • Ацетиленовые генераторы предназначены для получения С2Н2 разложением водой карбида кальция СаС2 по реакции:
  • СаС2 2Н2О = С2Н2 Са (ОН)2 Q
  • Теоретически для разложения 1 кг СаС2

надо затратить 0,37м3 С2Н2. 1,156 кг гашеной извести и более 400 ккал тепла.

  • Ацетиленовые генераторы различаются:
    • по производительности: от 1 до 80 м3/ч;
    • по ряду установок: стационарного и передвижного типа;
    • по принципу взаимодействия карбида кальция с водой: вода на карбид, вода на карбид –вытеснение, карбид в воду, вытеснение, сухого разложения.

    На рисунке 4.3 предоставлена схема стационарного ацетиленового генератора низкого давления типа ГНВ — 1,25, производительностью 1,25 м3/ч. Генератор состоит из верхней и нижней частей, разделенных перегородкой 6.

    Все генераторы снабжены предохранительными водяными затворами.

    Для подготовки генератора к работе необходимо открыть крышку 1 реторты и загрузить карбид кальция в корзину, после чего плотно закрыть крышку. Закрыть кран 5 и открыть кран 12. Корпус генератора заполняется водой до уровня шайбы-измерителя 8.

    Для пуска генератора необходимо закрыть кран 12 и открыть кран 5. Вода через шланг 4 попадает в реторту и смачивает карбид кальция, а образующийся С2Н2 через трубку 7 собирается в газосборнике 15, из него по трубе 9 при открытом кране 12 поступает в предохранительный водяной затвор и далее идет к сварочной горелке.

    Схема стационарного ацетиленового

    В процессе выполнения газовой сварки возможны обратные удары. Обратный удар — это распространение взрывной волны или пламени в направлении от горелки к источнику горючего газа. Причинами обратного удара могут быть:

    • значительный избыток кислорода (большое давление, при котором скорость сгорания горючего газа превышает скорость истечения газа из горелки);
    • закупорка мундштука наконечника горелки. Это происходит в результате разбрызгивания металла и попадания горячей капли в выходное отверстие мундштука;
    • нагрев наконечника, при котором С2Н2 взрывается внутри горелки.

    Для защиты генераторов от обратных ударов применяются предохранительные, чаще всего водяные, затворы. Действие водяного затвора открытого и закрытого типов основано на том, что взрывная волна и пламя, движущиеся навстречу потоку горючего газа, выводятся в атмосферу или гасятся внутри затвора.

    Для стационарного ацетиленового генератора типа

    ГНВ — 1,25 используется водяной затвор открытого типа. Затвор через воронку 13 заполняют водой до уровня контрольного крана 19.

    При нормальной работе С2Н2 проходит по газоотводной трубке 17, находящейся в предохранительной трубе 14 корпуса 16, через слой воды и накапливается в верхней части корпуса. Для предотвращения выхода газа в атмосферу служит рассекатель 20.

    Из верхней части С2Н2 через ниппель 18 поступает к сварочной горелке. При обратном ударе взрывная волна давит на воду, которая заходит в отверстие 21 газоподводящей трубки и создает водяную пробку, преграждая доступ взрывной волны в газопроводящую трубку.

    Смесь сгорающего газа с водой поднимается через зазор между газопроводящей и предохранительной трубками в воронку. Газ выходит в атмосферу, а вода возвращается в корпус. После каждого удара надо проверять уровень воды в затворе и, в случае надобности, доливать ее.

    Историческая справка

    Возможность получения высокотемпературного пламени при горении ацетилена с кислородом установил Ле Шателье (Франция) в конце 19 века. Его исследования легли в основу ацетилено-кислородной горелки, созданной и запатентованной в 1903 г.

    Принцип ее действия и основные конструктивные особенности практически не изменились до настоящего времени.

    Промышленное использование газовой сварки началось с 1906 г, а резки – с 1904 г., когда были запущены производительные и надежные генераторы ацетилена.

    Примерно с этого периода берет свое начало история газовой сварки и резки металлов в России. Активное ее использование приурочено к началу первой мировой войны.

    Промышленный выпуск специального, газосварочного оборудования относится к концу 1920-х г.г. после создания русско-американкого АО Рагаз.

    Плюсы и минусы газовой сварки

    Газовая сварка, как и другие виды, обладает своими достоинствами и недостатками.

    Профессионалы отмечают следующие плюсы:

    • доступность применения (сварочные работы можно производить в любом месте без привязки к сложному технологическому оборудованию и стационарным источникам энергии);
    • обеспечение широкого диапазона температур плавления;
    • возможность сварки большого количества разных по свойствам металлов: от чугуна до цветных сплавов;
    • при правильном подборе вида пламени и скорости горения совместно с соответствующим припоем и флюсом добиваются качественных и надежных швов;
    • последовательные нагрев и остывание не позволяют образовываться трещинам и пустотам, нарушающим целостность соединения;
    • транспортировать газовый аппарат достаточно просто;
    • себестоимость сварочных работ невысокая (не требуется дорогого сложного оборудования).
    • создается обширная площадь нагрева (может привести к повреждению близлежащих термонестойких элементов конструкции);
    • увеличение толщины заготовки приводит к существенному снижению производительности операции (применение данной технологии для листов или деталей, толщина которых превышает пять миллиметров, становится нерентабельным);
    • имеет ограничение по применению (проведение сварочной операции внахлест нецелесообразно в связи с высокой вероятностью создания неблагоприятных напряжений в металле, которые могут привести к деформации или разрушению места стыка);
    • реализация этой технологии плохо поддается автоматизации;
    • высокая опасность пожара и взрыва используемых компонентов при хранении и переноске к месту проведения работ.

    Технология газовой сварки

    Технология газовой сварки происходит с использованием присадки из легко сплавного материала, основной задачей которого является наполнение кромки материалов.

    Ацетиленовая горелка используется для оплавления кромок путем нагрева, после чего происходит соединение. Второй способ подразумевает наплавку или напыление, при зависимости от типа металла и оборудования.

    Отличие способов в расходе газовой смеси, подвергаемым к обработке материалам, затрачиваемом времени на операцию.

    Опыление двух соединений металла затребует больших температурных показателей, на это потребуется повышенное количество горючей смеси. Для нагрева присадочных прутков не требуется высоких температур, структура инструмента состоит из легкоплавких материалов. Существует специальный вид электродов для соединения материалов инверторным типом оборудования.

    Техника газовой сварки с применением различных присадок значительно прочнее, приятнее на внешний вид, процесс происходит быстрее, а расходы горючей смеси меньше в разы.

    READ  Как Верно Работать Шлифмашинкой По Дереву

    Применяется данная технология сварочных работ в различных сферах, соединение трубопроводов технологического направления, запасных частей машин, наплавление прутка, ковка различных фрагментов.

    Для процесса сварки газом потребуются основные элементы:

    • В качестве газа при большинстве случаев используется пропан. Подойдет различного типа газ с инертной текучестью.
    • Катализатором к воспламенению выступает баллон с кислородным газом.
    • Шланги для отвода газовой смеси, сопло, редуктора на баллоне и рукояти.

    Калибровочное сопло распыляет газовую смесь под давлением, для поджига применяется кремниевая пьеза-зажигалка, после чего регулируется насыщенность смеси, сила пламени.

    Какое оборудование?

    Газосварочное оборудование для газовой сварки – это широкий выбор приборов, позволяющих проводить ряд работ. Подобный тип сварки считается простым, и само оборудование довольно лаконичное и легкое в эксплуатации. В зависимости от типа горючего газосварочные устройства бывают пропано-кислородными или ацетилено-кислородными, бензино- или керосино-кислородными. Чаще всего сварка выполняется на основе пропано-кислородной и ацетилено-кислородной сварки, поскольку пламя этих газов имеет самую высокую температуру.

    Газосварочное оборудование для газовой сварки – это еще и генератор, который дополняется разными видами газа. Также при работе потребуется баллон с кислородом и редукторы. Самыми распространенными считаются ацетиленовые генераторы для газовой сварки, которые позволяют получить непосредственно ацетилен путем смешивания карбида кальция и воды. Данный тип генератора представлен в пяти типах, что позволяет подобрать оптимальный вариант для конкретного материала.

    Важную роль при работе со сваркой играют предохранительные затворы, их задача – обеспечить безопасность при проведении сварки. С их помощью предотвращается прохождение обратного удара пламени, которое возникает во время сварки. Кроме того, благодаря обратным клапанам предотвращается обратный поток газа в резиновые рукава при газопламенной обработке металлов и работе со сжатыми газами.

    Какие газы используются?

    При газовой сварке используются горючие газы – природный, ацетилен, пары бензина, водород. Эти газы отличаются хорошим горением на воздухе, не развивая при этом высокой температуры, для сжигания достаточно и кислородной струи. Газовая сварка чаще всего ведется на основе ацетилена, который создается на основе воды и карбида кальция. Он горит при температуре в 3200-3400 градусов.

    Сварка и резка металлов (учебный фильм)

    Редукторы: виды и особенности

    Газовый редуктор представляет собой устройство, которое постоянно понижает или держит на определенном уровне давление газа. Газовая сварка и резка металлов ведутся на основе разных типов редукторов:

    • Кислородные используются при газовой сварке и сварке металлов. Такой редуктор выполняется с голубой маркировкой. Может использоваться в агрессивной среде, поскольку создан из стойких к коррозии металлов.
    • Ацетиленовые редукторы нашли широкое применение в газовой сварке. Они маркируются белым цветом, крепление к баллону выполняется накидным хомутом. Данный вид редуктора имеет два манометра, один из которых держит под контролем давление газа в баллоне, второй – давление газа в рабочей камере.
    • Углекислотные редукторы широко применяются в промышленности – пищевой, химической. Они имеют один или два манометра и могут подключаться только к вертикальному манометру.

    При аргонодуговой сварке нашли широкое применение аргоновые редукторы, которые могут работать и с негорючими газами.

    Технология газовой резки

    Газокислородная резка ведется с использованием металлов и их сплавов, которые горят в струе технически чистого кислорода. Такой тип резки выполняется двумя способами – разделительно или поверхностно. Первый способ позволяет вырезать заготовки, раскроить металл, разделать кромки шва под сварки. С помощью поверхностной резки снимается поверхностный металл, разделываются канавки, удаляются поверхностные дефекты. Такая процедура выполняется на основе специальных резаков.

    Кислородный редуктор

    При сварке кислород поступает из специального баллона – он окрашивается в голубой или синий цвет. Чтобы обеспечивалась нормальная работа, кислород должен поступать в горелку равномерно и при небольшом давлении. Именно для этих целей на баллонах есть редуктор – он регулирует подачу газа. В таком случае к горелке подводятся рукава для газовой сварки – ацетиленовый и кислородный. Кислород подается в центральный канал, где струя больше разряжается, засасывает ацетилен, который попадает в горелку под небольшим давлением. Газы смешиваются в камере, после чего выходят наружу из наконечника.

    Особенности сварки труб

    Сварка газовых труб производится в несколько этапов. Сначала подготавливается металл, то есть проводится разметка, режутся и собираются трубы. Из-за круглого сечения труб резка выполняется термическим резаком. Большая часть работ по сварке – это сборка деталей под нее, когда требуется учесть множество деталей – от серии изделий до их диаметра и других факторов. Сборка выполняется сварочными прихватками, которые предотвращают возможное смещение отрезков труб, сказывающееся на появлении трещин при охлаждении.

    Зажигается дуга. Это делается разными способами. Затем начинается плавление металлов – основного и электродного. Для качественного шва важно уделять внимание углу наклона электрода.

    Виды газовых резаков

    Газовые резаки бывают разного типа: ацетиленовыми, пропановыми и работающими на заменителях газа или жидком горючем. Конструкция изделий включает в себя рукоятку, ниппели, к которым крепятся газовые рукава, корпус, инжектор, смесительную камеру, трубку, головку газового резака и трубку с вентилем. Газовая сварка металлов и ее качество зависят от того, насколько хорошо подобран именно резак.

    Суть его работы в следующем: из баллона кислород поступает в редуктор, рукав, после чего попадает в корпус – здесь резак разветвляется на два канала. Часть кислорода проходит через вентиль и направляется в инжектор. Отсюда газ выходит с большой скоростью, причем во время этого процесса подсасывается горючий газ. При соединении с кислородом он образует горючую смесь, которая направляется в пространство между мундштуками и сгорает. Как следствие, появляется подогревающее пламя. Кислород, который направлялся по второму каналу, выходит в трубку, за счет чего образуется режущая струя. Именно он обрабатывает участок металла.

    Газовая сварка и резка металлов. Технология газовой сварки. Оборудование для газовой сварки

    Газовая сварка – это вид сварочных работ, когда детали требуется нагреть до расплавленного состояния посредством высокотемпературного пламени. Такой способ широко применяется при создании конструкций на основе тонкой углеродистой стали, при ремонте изделий из чугуна, а также при необходимости заварки дефектов в разных изделиях, полученных литьем из цветных или черных металлов.

    Бензин и керосин для газовой сварки

    Бензин и керосин являются продуктами переработки нефти. Они представляют собой бесцветные жидкости со специфическим запахом и легко испаряются. Применяют их при газопламенной обработке, подавая их в виде паров. Для этого в сварочных резаках или горелках предусматривают специальные испарители, которые преобразуют бензин и керосин из жидкого состояния в парообразное. Испарители нагреваются от вспомогательного пламени или при помощи электричества.

    Нефтяной газ, природный газ и пропанобутановая смесь для газовой сварки

    Пиролизный газ представляет собой смесь горючих газов, образующихся при распаде нефти, мазута и других нефтепродуктов при воздействии на них высоких температур. В состав пиролизного газа входят сернистые соединения, которые вызывают коррозию мундштуков в газовых сварочных горелках. Поэтому, перед применением этот газ проходит тщательную очистку.

    Нефтяной газ. является побочным продуктом нефтеперерабатывающих предприятий. Он используется, в основном, для резки и сварки металлов малой толщины и для сварки цветных металлов.

    Пропанобутановые смеси являются бесцветными смесями, не имеющими запаха. Состоят они из пропана С3Н8 и бутана С4Н10. Эта смесь обладает наибольшей теплотворной способностью, т.е., при её сгорании выделяется наибольшее количество теплоты.

    Городской газ и природный газ для сварки

    Городской газ состоит из нескольких газов: метан 70-95%, водорода, объёмная доля которого может достигать 25%, тяжёлых углеводородов с их объёмной долей до 1%, азота 3% и углекислого газа до 1%. Транспортирование городского газа происходит по трубопроводам под давлением 0,3МПа.

    Природный газ добывается из газовых месторождений. Его основой является метан СН4, которого в природном газа составляет 93-99%.

    Ацетилен для газовой сварки

    Ацетилен. один из самых распространённых газов, применяемых для газовой сварки. Наибольшее распространение ацетилен получил из-за того, что ацетиленокислородное газовое пламя имеет наибольшую температуру, по сравнению с другими горючими газами и газовыми смесями (см. таблицу выше).

    Ацетилен образуется при взаимодействии карбида кальция CaC2 с водой. Карбид кальция способен поглощать влагу из атмосферы и разлагаться под её воздействием. Поэтому, его хранят в герметичных барабанах из кровельной стали. Вместимость таких барабанов составляет 100-130кг. Получают карбид кальция при сплавлении в электропечах кокса и обожжённой извести:

    Ацетилен С2Н2 представляет собой химическое соединение углерода с водородом. Для получения ацетилена используют ацетиленовые генераторы, в которые загружают карбид и воду. Химическое взаимодействие карбида кальция и воды протекает интенсивно, с большим выделением теплоты Q:

    Из 1кг карбида кальция можно получить до 300л ацетилена. При нормальных условиях ацетилен бесцветен и обладает резким специфическим запахом. Ацетилен легче воздуха, его плотность составляет 1,09кг/м3.

    Ацетилен взрывоопасен, если он находится в смеси с воздухом и его концентрация составляет 2,2-81% по объёму. В смеси с кислородом ацетилен взрывоопасен, при его концентрации 2,8-93% по объёму. Наиболее взрывоопасны ацетиленокислородные смеси, содержащие 7-13% ацетилена.

    При растворении в жидкости взрывоопасность ацетилена существенно снижается. На практике ацетилен растворяют в ацетоне, 1л которого способен растворить до 20л ацетилена. Об этом мы говорили в статье: «Газовые баллоны для сварки. Газосварочные баллоны».

    Кроме карбида кальция, источниками ацетилена являются природный газ, нефть и уголь. Полученный из природного газа, ацетилен называется пиролизным.

    Водород для газовой сварки

    Водород представляет собой бесцветный газ, не имеющий запаха. При смешивании с кислородом или воздухом образует «гремучий газ», который является взрывоопасным. Поэтому, в случае применения водорода для сварки металлов, необходимо строго придерживаться правил безопасности при его хранении, транспортировании и использовании.

    Водород хранят и транспортируют в стальных газосварочных баллонах при давлении, не превышающем 15МПа. Получить его можно, разлагая воду на водород и кислород при помощи электролиза. Также водород синтезируют в специальных водородных генераторах путём химической реакции серной кислоты H2SO4 и цинка, либо железной стружки. При этом образуются сульфаты цинка или железа, а освободившийся водород скапливается внутри генератора.

    Коксовый газ для сварки

    Коксовый газ представляет собой бесцветную смесь горючих газов с резким запахом сероводорода. Получают коксовый газ в процессе выработки кокса из каменного угля. В состав коксового газа входят водород, метан и другие углеводороды. Транспортировка этого газа происходит по трубопроводам.

    Газы для газовой сварки и резки металлов. Газовые смеси для сварки

    В качестве горючих газов для газовой сварки применяют ацетилен, водород, природный газ и другие. Также применяются газовые смеси для сварки, такие как нефтяной газ, пропанобутановая газовая смесь, пиролизный газ. Кроме того, для газовой сварки используют пары горючих жидкостей. бензина и керосина.

    В таблице представлены наиболее распространенные газы и газовые смеси для газовой сварки и газовой резки, указаны их основные свойства и область применения:

    Выбор того, или иного газа для сварки зависит не только от температуры пламени, но и от количества теплоты (теплотворной способности), которое получается при его сгорании. Коэффициент замены ацетилена, указанный в таблице, это отношение расхода газа-заменителя к расходу ацетилена при одинаковой эффективной тепловой мощности. Данный коэффициент необходим, если потребуется заменить ацетилен другим горючим газом.

    Кислород для газовой сварки

    Кислород для газовой сварки необходим, чтобы обеспечить сгорание горючих газов или паров горючей жидкости. Кислород несколько тяжелее воздуха и его плотность составляет 1,33кг/м3. Кислород очень активен химически и он поддерживает горение газов при газовой сварке, образовывая, при этом, большое количество теплоты.

    Кислород хранят и транспортируют в кислородных газовых баллонах под давлением 15МПа. Баллон объёмом 40л способен под давлением 15МПа хранить до 6м3 кислорода. Кроме газовых баллонов, кислород может поставляться к месту сварки в жидком состоянии в специальных ёмкостях.

    Для переходя жидкого кислорода в газообразный, применяют газификаторы и насосы с испарителями для жидкого кислорода. К сварочным постам для газовой сварки кислород подаётся по газопроводу. Транспортировка кислорода в газообразном состоянии позволяет уменьшить объём транспортировочной тары, приблизительно, в 10 раз, т.к. из 1л жидкого кислорода, при нормальных условиях, получается 860л газообразного кислорода.

    READ  Выбор циркулярки для установки в стол

    Согласно ГОСТ 5583, для газокислородной сварки и резки металлов применяют технический кислород, который бывает трёх сортов. Первый сорт имеет чистоту 99,7% кислорода. Второй сорт с чистотой 99,5 кислорода. Третий сорт содержит не менее 99,2% кислорода по объёму.

    Чистота кислорода имеет большое значение для газовой сварки и резки металлов. При снижении чистоты кислорода на 1%, качество сварки снижается и увеличивается расход кислорода, приблизительно на 1,5%.

    Газы для сварки и резки

    Ацетилен применяется для всех видов газопламенной обработки металла. Самопроизвольно взрывается при 500° С и давлении 150 кПа, а в присутствии катализатора (окиси меди)—прн 240 °С, в смеси с кислородом — при 305 °С. С медью и серебром образует взрывоопасную смесь, поэтому при изготовлении аппаратуры не используют сплавы с м меди свыше 70%. Фосфо­ристый водород может быть причиной самовоспламенения ацетилена.

    На рабочие места газ поступает из передвижных генераторов, трубопроводов или баллонов с растворенным ацетиленом.

    Водород применяется прн сварке и пайке легкоплавких металлов и стекла, а также при кислородной резке под водой. Обладает высокой проникающей способностью, поэтому при его использовании нужно обращать особое внима­ние на плотность всех соединений аппаратуры. Взрывоопасен, особенно прн обра­зовании смеси 65% водорода с кислородом — «гремучий газ».

    Природный газ (метан) — бесцветный, с запахом чеснока. Применяется для кислородной резки и других видов газопламенной обработки.

    Сжиженные или жидкие газы: основные компоненты их — пропан и бутан прн 20° С и 0,1 МПа находятся в газообразном состоянии, но при небольшом давлении сжижаются. Эти газы тяжелее воздуха и при утечках застаиваются в нижних частях помещений и углублениях. Поэтому их нельзя использовать в замкнутых сосудах, шахтах и т. п. При испарении 1 кг жидкой смеси полу­чается около 0,5 м3 газа. Пропаи-бутановая смесь применяется для газовой резки, при некоторых сварочных работах и для прихватки соединений под сварку.

    Пары бензина и керосина используются в основном для кислородной резки металлов, обеспечивая хорошую чистоту реза. В резак подаются в жидком виде из специального бачка под давлением 200—300 кПа.

    Кислород (ГОСТ 5583—78) — газ без цвета, запаха и вкуса. В смеси с горю­чими газами обеспечивает высокую температуру пламени. Масса 1 л жидкого кислорода при температуре —183° С и 0,1 МПа — 1,14 кг. Кислород выпускается трех сортов, чистотой не ниже, %: 1-й — 99,7; 2-ой — 99,5; Б — 99,2. Чистота кислорода особенно влияет на производительность и качество кислородной резки. Соприкосновение сжатого кислорода с маслами, жирами н мелкодисперснымигорючими веществами (угольной пылью, ворсинами тканей и т. д.) может при­вести к мгновенному окислению с выделением тепла, разогреву и воспламенению металлических частей аппаратуры, в первую очередь вентиля баллона. На ра­бочие места кислород попадает по трубопроводам под давлением до 1500 Kia нли поступает из баллонов.

    Техническая характеристика горючих газов (паров) и жидкостей при давлении 0,1 МПв (760 мм рт. ст.)

    Получение ацетилена производят двумя основными способами:

    • из карбида кальция в результате реакции гидролиза
    • из углеводородных продуктов, содержащихся в природных газах, нефти, газах от переработки угля и торфосланцев.

    На данный момент способ получения ацетилена из карбида кальция используется редко, поскольку он довольно громоздкий, дорогой и требующий затрат большого количества электроэнергии.

    Поэтому на смену ему пришел способ получения ацетилена из природного газа (метана) термоокислительным пиролизом метана с кислородом (так называемый пиролизный ацетилен).

    Винилацетат

    C уксусной кислотой также в присутствии ртутных солей ацетилен образует винилацетат:

    Хлористый винил и винилацетат широко применяются при производстве пластмасс.

    Влияние примесей в ацетилене на качество сварного шва

    Давайте остановимся еще на некоторых особенностях применения ацетилена при газовой сварке – влияние примесей на качество сварного шва. Вредное влияние имеют следующие примеси:

    • сероводород
    • фосфористый водород

    Вышеуказанные примеси обязательно удаляются из ацетилена, не только из-за влияния на качество сварного шва, но также из-за пагубного влияния на органы дыхания и зрения сварщика (см. статью Взрывоопасность, ядовитость и самовоспламенение ацетилена).

    Сероводород при сгорании образовывает серную кислоту, которая при переходе в металл сварного шва вызывает красноломкость. Установлено, что наличие сероводорода до 0,007% не оказывает вредного влияния на прочность сварного шва.

    Определить наличие сероводорода в ацетилене довольно легко, необходимо поднести фильтровальную бумагу, смоченную в растворе хлористой ртути под струю ацетилена. При наличии сероводорода. бумага побелеет.

    Процесс очистки от сероводорода тоже довольно простой – необходимо ацетилен пропустить через воду, в результате чего сероводород растворится в воде.

    Фосфористый водород при сгорании образовывает фосфорную кислоту, которая при переходе в металл сварного шва вызывает хладноломкость. Установлено, что наличие фосфористого водорода до 0,027% не оказывает вредного влияния на прочность сварного шва.

    Для определения наличия фосфористого водорода необходимо кусок фильтровальной бумаги, смоченный в десятипроцентном растворе азотнокислого серебра поднести под струю ацетилена. При содержании 0,01% фосфористого водорода бумага принимает отчетливую светло- желтую окраску, при содержании более 0,02%. бумага темнеет.

    Химическим путем очистка ацетилена от фосфористого водорода производится путем пропускания через особую очистительную массу – гератоль. Гератоль представляет собой массу желтого цвета, которая в результате взаимодействия с фосфористым водородом приобретает зеленый цвет.

    Хлористый винил

    При взаимодействии ацетилена с хлористым водородом при 200°C над катализатором, представляющим собой двухлористую ртуть, нанесенную на активированный уголь, образуется хлористый винил по уравнению:

    Применение ацетилена

    Ацетилен применяется при всех процессах газопламенной обработки металлов (газовой сварке и газовой резки), благодаря высокой температуре пламени, достигнуть которой при использовании других горючих не удается.

    Для пайки, резки, наплавки, газопламенной закалки, металлизации, газопрессовой сварки, сварки цветных металлов и сплавов с успехом применяются газы-заменители ацетилена:

    • пропано-бутановые смеси
    • городской газ
    • природные газы
    • водород
    • пары бензина
    • пары керосина
    • МАФ
    • и др.

    По химическому составу все они, за исключением водорода, представляют собой или соединения, или смеси различных углеводородов.

    Правильный выбор и использование газов-заменителей позволяет добиться высокого качества сварки и резки, а при газовой резке металлов малых толщин дает более высокую чистоту резки.

    Газовая сварка возможна при условии, что температура пламени в два раза превышает температуру плавления свариваемого металла. Поэтому газы-заменители температура пламени которых ниже, чем у ацетилена применяют для сварки металлов с температурой плавления ниже, чем у сталей

    Для газовой резки выбор горючего газа основывается на его теплотворной способности, но необходимо учитывать, что газ при сгорании в смеси с кислородом должен образовывать пламя с температурой не ниже 2000°C.

    Ацетон

    При пропускании смеси ацетилена и паров воды в соотношении примерно 1:10 при температуре 430-450°C над цинк-ванадиевым катализатором происходит образование ацетона по уравнению:

    Указанный процесс нашел применение в промышленных масштабах.

    Уксусный альдегид

    Продуктом присоединения воды к ацетилену является уксусный альдегид. Впервые этот синтез был осуществлен М. Г. Кучеровым в 1881 г. Реакция протекает по уравнению:

    Реакция проводится пропусканием ацетилена через сернокислый раствор соли окиси ртути при температуре 70-80°C.

    Применение этой реакции явилось началом промышленного синтеза органических веществ с применением ацетилена в качестве исходного продукта.

    Сварка и обработка поверхности нержавеющих сталей. Часть 2

    Во второй части серии роликов о сварке нержавеющих сталей речь идет об общей характеристике нержавеющих сталей. В данной части, рассматриваются следующие темы:

    Плазменно-дуговая резка металлов

    Резка плазменной дугой основана на способности сжатой дуги глубоко проникать в металл, проплавляя его по косильной лески реза дуговым разрядом. Под действием высокой температуры сжатой дуги газ 2, проходя через дуговой разряд, сильно ионизирует, образуется струя плазмы, которая удаляет расплавленный металл из места реза. Дуга 1 возбуждается между разрезаемым металлом 4 и неплавящимся вольфрамовым электродом 5, расположенным внутри головки резака 6. Дуговую газоразрядную плазму 3 называют низкотемпературной (ее температура 5000-20 000°С).

    Газовая резка металлов для новичков

    Если Вам интересно, как выглядит пост для кислородной резки, последовательность зажигания газового резака и, конечно же, процесс газовой резки – рекомендуем посмотреть данное видео.

    Плазменная резка для новичков

    Когда речь заходит о резке металла следует особое внимание уделить выбору способа. Так как металл может быть совершенно разнообразным, то способ резки должен быть универсальным, для того, чтобы справиться с любым типом металла. В этом случае следует обратить внимание на плазменную резку. Это способ обработки металлов, особенностью которого является то, что в качестве резца используется струя ионизированного газа – плазмы.

    Газорезка и необходимые знания при выборе газорезательного инструмента

    В данной статье мы поговорим о газовых резаках. Для чего нужен газовый резак? Как ни странно, но он нужен для резки металла. Для этого сначала нужно нагреть метал до температуры плавления, а затем подать туда струю кислорода для того, чтобы металл начал гореть, и таким образом, осуществляется резка.

    Классификация термической резки металлов и сплавов

    Термическую резку металлов и сплавов можно классифицировать:

    Кислородно-дуговая и воздушно-дуговая резка

    Кислородно-дуговую резку применяют для резки углеродистых сталей и отличают от дуговой тем, что на нагретый до плавления металл подают струю технически чистого кислорода, которая интенсивно окисляет металл и удаляет из разреза образующиеся оксиды. При сгорании металла в струе кислорода образуется дополнительная теплота, которая ускоряет процесс резки металлов. В качестве электродов используют стальные трубки наружным диаметром 8 мм, длиной 340-400 мм. Для устойчивого горения дуги на трубки-электроды наносят специальное покрытие.

    Сварка, резка и пайка металлов

    При ремонте сельскохозяйственной техники широко применяются газовая сварка и резка.

    Накопленный производственный опыт показал, что пропан и бутан являются хорошими заменителями ацетилена и керосина для газопламенной обработки металла. Сжиженный газ дешевле ацетилена, а качество резки пропан-бутан-кислородным пламенем выше, чем ацетилено-кислородным. При работах в зимних условиях получение газа из баллона с пропан-бутановой смесью не вызывает обычно затруднений. Ведение работ с применением сжиженных газов значительно более безопасно, чем при использовании карбида кальция и ацетилена.

    Газовая сварка производится сварочным пламенем, образующимся при сгорании смеси кислорода с горючим газом, который может являться сжиженным газом (пропан или пропан-бутановая смесь). Сварочное пламя в зависимости от соотношения кислорода и пропан-бутана бывает нормальным, окислительным и науглероживающим.

    Для сварки большинства металлов используют нормальное пламя с небольшим избытком кислорода. Сварка малоуглеродистой стали пропан-бутан-кислородной смесью производится при соотношении газа и кислорода 1 : 3.

    Уменьшением содержания пропан-бутана или увеличением количества кислорода получают окислительное пламя, а при увеличении количества пропан-бутана науглероживающее пламя.

    Газокислородная сварка и резка металла может производиться как в условиях мастерских, так и в полевых условиях, для чего обычно используются одиночные баллоны.

    Питание передвижного поста от баллона ввиду небольшого количества отбираемого газа может осуществляться без испарителя при температуре воздуха до минус 25—30 °С. При питании нескольких постов от газовой сети, т. е. при белое значительном расходе газа, может быть применена групповая баллонная установка.

    Газы доставляются на рабочее место или по трубопроводу от стационарных емкостей, или в стальных баллонах.

    Для снижения давления сжиженного газа могут быть использованы обычные редукторы типа РДК, РДГ-6 и другие.

    Применяя ацетиленовый редуктор, надо притяжной хомут заменить переходным штуцером с накидной гайкой.

    Корпус водородного, кислородного или ацетиленового редуктора, используемого для снижения давления сжиженного газа, и корпус манометра окрашиваются в красный цвет. На циферблате манометра надписи «Водород», «Кислород», «Ацетилен» заменяются надписью «Пропан».

    Правила обращения с редукторами для сжиженного газа такие же, как и с кислородными редукторами. Применение кислородного и водородного редукторов для кислорода, после использования их для сжиженного газа, во избежание взрыва категорически запрещается.

    Отбор газа из баллона без редуктора запрещается.

    При испытании поста газовой резки от газовой сети с давлением газа от 1 до 5 кГ/см 2 установка редуктора также совершенно обязательна.

    При работе с пропан-бутановыми смесями необходимо тщательно следить за резиновыми мембранами, так как при выходе из баллона газа в жидком виде и проникновении его в редуктор резиновая мембрана постепенно разъедается и приходит в негодность.

    Пропускная способность редукторов по сжиженному газу составляет для РДК-00 — 1,3; для РД-1-0,25 — 5 м 3 /ч.

    Для присоединения горелки (резака) к редуктору, установленному на баллоне, применяют резино-тканевые шланги по ГОСТ 8318—57, рассчитанные на рабочее давление 10 кГ/см 2.

    Конструкция газосварочной горелки проста и изготовить ее можно в условиях любых мастерских.

    Для сварки малоуглеродистых сталей толщиной от 0,5 до 5 мм и других видов газопламенной обработки металлов (пайка, подогрев и др.) с применением в качестве горючего газа пропана или пропан-бутана можно использовать сварочную горелку «Уфа», схема которой показана на рис. 40.

    READ  Каким Диском Резать Металл Болгаркой

    Наконечник горелки «Уфа» отличается от существующих ацетилено-кислородных наконечников наличием камер предварительного и окончательного подогрева горючего газа перед инжектором.

    При отборе газа из газовых сетей с давлением от 70 мм вод. ст. до 10 тыс. мм вод. ст. (1 кГ/см 2 ) редуктор может не устанавливаться, а устанавливается предохранительный водяной затвор.

    При давлении газа в газовых сетях от 70 до 200 мм вод. ст. на спуске к рабочему посту устанавливается водяной затвор ЗГГ-3 конструкции ВНИИавтоген. При давлении от 200 до 1000 мм вод. ст. устанавливаются водяные затвори открытого типа ВЗНД-3 с предельной пропускной способностью 3 м 3 /ч. При давлении газа от 1000 до 7000 мм вод. ап. устанавливаются водяные затворы закрытого типа (среднего давления ЗСД-З-07 и высокого ВЭС-10) на 1,5 кГ/см 2 и с пропускной способностью в 3 и 10 м 3 /ч. Поминальная пропускная способность водяного затвора должна соответствовать наибольшему возможному отбору газа.

    Собранная горелка вставляется в гнездо ствола и крепится гайкой, причем предварительно между венчиком сместителя и уплотнительной шайбой следует подмотать асбестовый шнур.

    Выполнив эту операцию, можно открыть вентили на баллонах с кислородом и сжиженным газом, затем открыть вентили сжиженного газа и кислорода на стволе, зажечь смесь на наконечнике. После 2—3 мин горения горелки производится регулировка необходимого пламени кислородным и газовым вентилями на стволе. Подбор пламени производится в течение нескольких секунд.

    Кислород и пропан-бутан, проходя через ствол, вентили, попадает в камеру смешения. Часть смеси попадает в горелку для подогрева камеры, а основная масса смеси идет в камеру подогрева, заполненную катализатором (никелевая лента толщиной 0,2 мм, свернутая в виде пружины), где подогревается до 270° С. После этого смесь попадает в конус и к мундштуку. При сгорании получается пламя с температурой до 3100° С, достаточной для сварки малоуглеродистой стали.

    Сварка в зависимости от толщины свариваемого материала ведется при давлении кислорода 3,5 —5 кГ/см 2 и давлении газа 0,8—1,3 кГ/см 2. При удлинении шлангов давление несколько увеличивается.

    Длина пламени горелки должна быть в пределах 12—23 мм. Его цвет должен быть бледно-голубым.

    Сварщику необходимо следить за процессом в сварочной ванночке и вести более интенсивное перемешивание расплавленного металла. Пламя следует держать под углом 60—80° относительно поверхности металла, ведя сварку слева направо, выдувая возможный шлак из ванночки (незачищенные торцы). При зачищенных торцах шлаковые отложения незначительные.

    При необходимости замены большего номера мундштука на меньший размер в комплект горелки должен входить переходник.

    В зависимости от номера мундштука заменяется и наконечник. При большем номере мундштука ставится больший номер наконечника, и наоборот. Соответственно изменяется и кислородный инжектор.

    Необходимо упомянуть, что при освоении сварщиком сварки стали пропан-бутан-кислородной смесью в первое время возможны трудности и недостатки в сварке, но когда сварщик освоит регулировку пламени, в зависимости от толщины свариваемого металла, сварка проходит нормально и швы получаются хорошими.

    Из практики сварки пропан-бутан-кислородной смесью известно, что для более интенсивного парообразования желательно баллон ставить в отапливаемое помещение.

    По данным ВНИИавтогена хорошие результаты при сварке малоуглеродистой стали можно получить, применяя и присадочную проволоку марок СВ-08ГС и СВ-082ГС.

    Можно еще отметить, что с повышением содержания пропана в пропан-бутан-кислородной смеси качество сварки улучшается.

    Практически пропан-бутан-кислородная смесь в сельской местности может быть использована для сварки водогазопроводных труб диаметром до 4″, листовой малоуглеродистой стали толщиной до 5—6 мм, сварки емкостей и бидонов для молока, деталей сельскохозяйственных машин, крыльев и капотов автомашин и для пайки цветных металлов.

    Невысокая температура плавления алюминия позволяет в условиях сельскохозяйственных мастерских использовать для их сварки пропан-бутановые смеси.

    Челябинским межотраслевым научно-исследовательским и проектно-технологическим институтом автоматизации и механизации машиностроения была проведена серия опытов по сварке и резке пропаном в совхозе «Степной» Челябинской области. Эти опыты показали, что применение пропана вместо ацетилена дает положительные результаты.

    Для резки использовались ацетиленовые резаки РР-53 с переделкой (увеличивались отверстия в инжекторе и смесительной камере соответственно до 1 и 3 мм, увеличивался кольцевой зазор между внутренним и наружным мундштуком). Аналогичные изменения в инжекторе и смесительной камере делались и у ацетиленовой горелки ГС-53 (для наконечника ). После этих переделок и с применением пропана можно было производить сварку цветных металлов и чугуна.

    Пропан-кислородным пламенем производилась приварка алюминиевых фланцев всасывающего коллектора трактора «Белорусь», ремонт алюминиевых емкостей, трубопроводов и бидонов для молока на маслозаводе. Производительность при сварке алюминиевых листов толщиной 3—4 мм пропан-кислородным пламенем выше, чем ацетилен-кислородным: за 6 ч работы сваривается 46 пог. м шва.

    Основная трудность сварки алюминия, как известно, заключается в образовании пленки тугоплавких окислов алюминия на поверхности металла, препятствующей сплавлению. Эти окислы не восстанавливаются пропан-кислородным пламенем; они тяжелее алюминия и тонут в нем. Для достижения высокого качества кромки детали перед сваркой очищают стальной щеткой; пламя горелки должно быть нормальным. На присадочный пруток марки АД или АК наносится флюс АФ-4а.

    При сварке алюминия толщиной до 3 мм горелке дают только поступательное движение, а прутком совершают колебательные движения, чем удаляются пленка и шлак и облегчается всплывание газовых пузырей на поверхность. Пламя горелки направляют на присадочный стержень под углом 40—60° и одновременно охватывают свариваемые кромки.

    При сварке ядро пламени должно находиться на расстоянии не более 3 мм от поверхности ванны. При выполнении этих требований качество сварки высокое, пористости нет, кристаллизационные трещины не образуются. Прочность алюминиевых швов, полученных при сварке с использованием пропана и ацетилена, практически одинакова. Хотя теплопроводность алюминия почти в 5 раз, а теплоемкость в 2 раза больше, чем стали, пропан-кислородной горелкой можно сваривать алюминиевые шины толщиной до 10—12 мм, не применяя предварительного подогрева.

    Сварка свинца. Сварка свинца ведется нейтральным пламенем с минимально возможным углом наклона пламени к поверхности детали. При толщине металла свыше 2 мм шов накладывается в несколько слоев (отдельные участки перекрывают друг друга).

    Практика показала, что сварку свинца пропан-кислородным пламенем можно с успехом производить горелкой ГСМ без ее переделки. Сварные швы обладают достаточно высоким качеством. Такой метод успешно применен для сварки свинцовых клемм кислотных аккумуляторных батарей.

    Сварка меди. В связи с большой теплопроводностью меди при ее сварке требуется большой подвод тепла, поэтому пламя горелки следует держать перпендикулярно к поверхности сварочной ванны; горелку выбирают на два номера большую, чем для сварки стали такой же толщины, а в ряде случаев сварку производят двумя горелками.

    Сварка производится нейтральным пламенем, по возможности без перерывов. Кромки и проволоку необходимо расплавлять одновременно. Не следует доводить ванну до очень подвижного состояния. В качестве флюса применяется бура или смесь буры и борной кислоты. В качестве присадочного прутка хорошие результаты дает медная проволока, раскисленная фосфором ( фосфора 0,03—0,08%), а также кремнием ( кремния 0,5—1,0%). Для лучшего качества шва при толщине изделия до 5 мм производится проковка. Проковку ведут в холодном состоянии, а при больших толщинах — при температуре 400—500° С. Для уменьшения хрупкости после остывания сваренной детали до 500° С изделие быстро охлаждают погружением в воду. Скорость сварки пропан-кислородным пламенем медных листов толщиной 4— 5 мм одинакова со скоростью сварки ацетиленом.

    Сварка латуни. Бронза и латунь также легко свариваются пропан-кислородным пламенем. Главное затруднение при сварке латуни газо-кислородным пламенем состоят в испарении цинка (до 20%), вследствие чего шов получается пористым. Угар цинка при пропан-кислород ном пламени менее 1 %, благодаря чему шов получается плотным. Присадочная проволока берется такого же состава, как основной металл. В качестве флюса рекомендуется плавленая бура. При применении присадочной проволоки ЛК-02-05 при известном навыке возможна сварка в любых пространственных положениях.

    В одном совхозе таким способом наплавлялись бронзой изношенные бронзовые вкладыши подшипников и различные детали из латуни. Качество сварки и наплавки во всех случаях было хорошее.

    Пропан-бутановые смеси являются также полноценными заменителями ацетилена и при пайке твердыми припоями ПМЦ-54 и Л-02.

    Сварка чугуна. Серый чугун широко используется в деталях тракторов и сельскохозяйственных машин. Все сложные детали: блоки цилиндров, головки блоков, картеры, коробки передач и сцепления, выпускные и впускные трубы, шкивы, звездочки цепные и рад других деталей, отливаются из чугуна.

    Как известно, в случае ремонта чугунных деталей сложной геометрической формы, например головок блоков, требуется предварительный нагрев детали. Однако многие детали сельскохозяйственных машин — кронштейны, рычаги, ценные звездочки — могут быть отремонтированы без предварительного подогрева.

    При сварке чугуна имеет место большое выгорание углерода и кремния. Поэтому сварочные прутики должны иметь повышенное этих элементов. Хорошие результаты получены при использовании в качестве присадочного материала изношенных чугунных поршневых колец двигателей.

    При заварке дефектов сложных чугунных деталей целесообразно производить пайку чугуна латунью. Графит с поверхности удаляют выжиганием, сварочной горелкой с окислительным пламенем, причем деталь нагревается до температуры 750—900° C. Затем ремонтируемое место посыпают флюсом и покрывают слоем латуни. После пайки деталь покрывают листом асбеста и медленно охлаждают. В этом случае в детали не возникает больших напряжений и шов хорошо обрабатывается.

    Как показала практика, для ремонта чугунных деталей, в основном для заварки трещин, может быть с успехом применен пропан.

    Резка металла. Для разделительной резки сжиженным газом металлов применяются резаки типов РЗР-01-55, УРЗ и РЗП, а также резаки бензиновые и керосиновые.

    При отсутствии этих резаков можно использовать обыкновенный резак УР, увеличив диаметр отверстия инжектора до 0,3—0,9 мм.

    Наружный мундштук. имеющий диаметр 5,5 мм, следует применять вместо мундштука. а мундштук с отверстием 0,5 мм — вместо мундштука Для резки листа большой толщины диаметр сопла инжектора увеличивается до 0,95 мм, а диаметр отверстия наружного мундштука — до 7 мм. Диаметр канала смесительной камеры при резке больших толщин можно увеличить до 3 мм.

    Уход за резаками, работающими на пропан-бутановой смеси, аналогичен уходу за ацетилено-кислородными резаками.

    Подготовка рабочего места к работе, редукторов, шлангов, резака и горелки, продувка баллонов, установка редуктора, заливка водяного затвора водой, крепление шлангов резака и горелки, проверка наличия подачи в резаке, зажигание и тушение резака и горелки производятся в той же последовательности, как и при ацетилено-кислородной резке и сварке.

    Правильно отрегулированное пламя при горении пропан-бутановой смеси в струе кислорода имеет ярко очерченное ядро, горит спокойно и устойчиво. Длина пламени пропан-бутановой смеси больше длины пламени ацетилено-кислородной смеси.

    Подогревательное пламя регулируется в резаке на максимальную температуру (с небольшим избытком кислорода) по пламени на мундштуке.

    Применение пропан-бутановой смеси вполне возможно для резки углеродистых и конструкционных (низколегированных) сталей, а также чугуна, хромо-никелевых сталей и цветных металлов.

    Величина давления кислорода устанавливается в зависимости от толщины разрезаемого металла в пределах от 2 до 15 кГ/см 2. Давление пропан-бутановой смеси может быть в пределах от 0,007 до 0,5 кГ/см 2. при длинных шлангах и в стационарных сетях — до 1 кГ/см 2.

    Резку обычно начинают с кромки, предварительно очищенной от грязи и окалины. Если надо начать резку с середины (при большой толщине металла), то необходимо просверливать или прожигать отверстие диаметром 5—10 мм.

    Для увеличения скорости нагрева металла в начальный период (при круглых сечениях металла) необходимо сделать надрубы зубилом или подставить в месте начала реза металлический пруток. Подогревательным пламенем вначале нагревают металл в том месте, откуда начинается резка, до температуры его воспламенения (для стали 100—1200° С, светло-красное каление), потом пускают режущую струю кислорода и перемещают резак по косильной лески разреза. Расстояния резака от косильной лески разреза должны быть по возможности равномерными. Для выполнения этого условия необходимо применять приспособления (направляющую линейку и др.). При очень большой скорости перемещения резака резка может прекратиться, а при малой скорости — верхние кромки разрезаемого металла оплавляются.

    При резке труб на фаску угол опережения резака должен составлять 5—10°, а при резке труб без фаски — 10—15°.

    В остальном технология резки стали пропан-бутановой смесью не отличается от технологии резки ацетилено-кислородным пламенем.

    При сварке и резке металла необходимо соблюдать мероприятия по технике безопасности.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите CtrlEnter.